Search results
Results from the WOW.Com Content Network
For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...
Bagwell [1] presented a time and space efficient solution for tries named Array Mapped Tree (AMT). The Hash array mapped trie (HAMT) is based on AMT. The compact trie node representation uses a bitmap to mark every valid branch – a bitwise trie with bitmap. The AMT uses eight 32-bit bitmaps per node to represent a 256-ary trie that is able to ...
A full binary tree An ancestry chart which can be mapped to a perfect 4-level binary tree. A full binary tree (sometimes referred to as a proper, [15] plane, or strict binary tree) [16] [17] is a tree in which every node has either 0 or 2 children.
A tree sort is a sort algorithm that builds a binary search tree from the elements to be sorted, and then traverses the tree so that the elements come out in sorted order. [1] Its typical use is sorting elements online : after each insertion, the set of elements seen so far is available in sorted order.
In computing, a threaded binary tree is a binary tree variant that facilitates traversal in a particular order. An entire binary search tree can be easily traversed in order of the main key, but given only a pointer to a node, finding the node which comes next may be slow or impossible. For example, leaf nodes by definition have no descendants ...
In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2]
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.