enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron transfer may occur spontaneously. The Gibbs free energy is the energy available ("free") to do work.

  3. Dioxygen in biological reactions - Wikipedia

    en.wikipedia.org/wiki/Dioxygen_in_biological...

    The reaction for the aerobic respiration is essentially the reverse of photosynthesis, except that now there is a large release of chemical energy which is stored in ATP molecules (up to 38 ATP molecules are formed from one molecule of glucose and 6 O 2 molecules). The simplified version of this reaction is: C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H

  4. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids.

  5. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The water-splitting reaction occurs on the lumenal side of the thylakoid membrane and is driven by the light energy captured by the photosystems. This oxidation of water conveniently produces the waste product O 2 that is vital for cellular respiration. The molecular oxygen formed by the reaction is released into the atmosphere.

  6. Photorespiration - Wikipedia

    en.wikipedia.org/wiki/Photorespiration

    Hydrogen peroxide is a dangerously strong oxidant which must be immediately split into water and oxygen by the enzyme catalase. The conversion of 2× 2Carbon glycine to 1× C 3 serine in the mitochondria by the enzyme glycine-decarboxylase is a key step, which releases CO 2, NH 3, and reduces NAD to NADH. Thus, one CO

  7. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).

  8. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Typically, the complete breakdown of one molecule of glucose by aerobic respiration (i.e. involving glycolysis, the citric-acid cycle and oxidative phosphorylation, the last providing the most energy) is usually about 30–32 molecules of ATP. [16] Oxidation of one gram of carbohydrate yields approximately 4 kcal of energy. [3]

  9. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    The antenna complex contains hundreds of chlorophyll molecules which funnel the excitation energy to the center of the photosystem. At the reaction center, the energy will be trapped and transferred to produce a high energy molecule. [2] The main function of PSII is to efficiently split water into oxygen molecules and protons.