Search results
Results from the WOW.Com Content Network
The relation between local and global truncation errors is slightly different from in the simpler setting of one-step methods. For linear multistep methods, an additional concept called zero-stability is needed to explain the relation between local and global truncation errors.
Implicit type conversion, also known as coercion or type juggling, is an automatic type conversion by the compiler. Some programming languages allow compilers to provide coercion; others require it. In a mixed-type expression, data of one or more subtypes can be converted to a supertype as needed at runtime so that the program will run correctly.
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...
For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
All collocation methods are implicit Runge–Kutta methods, but not all implicit Runge–Kutta methods are collocation methods. [28] The Gauss–Legendre methods form a family of collocation methods based on Gauss quadrature. A Gauss–Legendre method with s stages has order 2s (thus, methods with arbitrarily high order can be constructed). [29]
The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.
In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations. It is a popular method for solving the large matrix equations that arise in systems theory and control , [ 1 ] and can be formulated to construct solutions in a memory-efficient, factored form.