Search results
Results from the WOW.Com Content Network
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are:
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to; A linear inequality looks exactly like a linear equation, with the inequality sign replacing the equality sign.
The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize ...
Mathematics education in the United States varies considerably from one state to the next, and even within a single state. However, with the adoption of the Common Core Standards in most states and the District of Columbia beginning in 2010, mathematics content across the country has moved into closer agreement for each grade level.
Whiteley, J.N. (1969). "On Newton's Inequality for Real Polynomials". The American Mathematical Monthly. 76 (8). The American Mathematical Monthly, Vol. 76, No. 8: 905– 909. doi:10.2307/2317943. JSTOR 2317943. Niculescu, Constantin (2000). "A New Look at Newton's Inequalities". Journal of Inequalities in Pure and Applied Mathematics. 1 (2 ...