Search results
Results from the WOW.Com Content Network
The Cope rearrangement is the prototypical example of a concerted sigmatropic rearrangement. It is classified as a [3,3]-sigmatropic rearrangement with the Woodward–Hoffmann symbol [π 2 s + σ 2 s + π 2 s] and is therefore thermally allowed.
The Cope rearrangement is an extensively studied organic reaction involving the [3,3] sigmatropic rearrangement of 1,5-dienes. [ 14 ] [ 15 ] [ 16 ] It was developed by Arthur C. Cope . For example, 3,4-dimethyl-1,5-hexadiene heated to 300 °C yields 2,6-octadiene.
The aza-Cope rearrangements are predicted by the Woodward-Hoffman rules to proceed suprafacially. However, while never explicitly studied, Overman and coworkers have hypothesized that, as with the base-catalyzed oxy-Cope rearrangement, the charged atom distorts the sigmatropic rearrangement from a purely concerted reaction mechanism (as expected in the Cope rearrangement), to one with partial ...
The reverse or retro-Cope elimination has been reported, in which an N,N-disubstituted hydroxylamine reacts with an alkene to form a tertiary N-oxide. [ 9 ] [ 10 ] The reaction is a form of hydroamination and can be extended to the use of unsubstituted hydroxylamine, in which case oximes are produced.
In organic chemistry, the oxy-Cope rearrangement is a chemical reaction.It involves reorganization of the skeleton of certain unsaturated alcohols. It is a variation of the Cope rearrangement in which 1,5-dien-3-ols are converted to unsaturated carbonyl compounds by a mechanism typical for such a [3,3]-sigmatropic rearrangement.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The divinylcyclopropane-cycloheptadiene rearrangement is an organic chemical transformation that involves the isomerization of a 1,2-divinylcyclopropane into a cycloheptadiene or -triene. It is conceptually related to the Cope rearrangement , but has the advantage of a strong thermodynamic driving force due to the release of ring strain.
Mechanism of the Wolff rearrangement used to give a ring contracted product. In the Arndt–Eistert reaction, an α-diazoketone is induced to release N 2, resulting in a highly reactive sextet carbon center adjacent to the carbonyl. Such species convert by a Wolff rearrangement to give an ester in the presence of alcohols. When applied to ...