Search results
Results from the WOW.Com Content Network
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
Polymer electrolyte membrane electrolysis is a technique by which proton-exchange membranes are used to decompose water into hydrogen and oxygen gas. [21] The proton-exchange membrane allows for the separation of produced hydrogen from oxygen, allowing either product to be exploited as needed.
Both of these mechanisms can be seen in industrial practices at the cathode side of the electrolyzer where hydrogen evolution occurs. In acidic conditions, it is referred to as proton exchange membrane electrolysis or PEM, while in alkaline conditions it is referred to simply as alkaline electrolysis. Historically, alkaline electrolysis has ...
A proton pump is an integral membrane protein pump that builds up a proton gradient across a biological membrane. Proton pumps catalyze the following reaction: H + [on one side of a biological membrane] + energy ⇌ H + [on the other side of the membrane]
A proton-exchange membrane electrolyser separates reactants and transports protons while blocking a direct electronic pathway through the membrane. PEM fuel cells use a solid polymer membrane (a thin plastic film) which is permeable to hydrogen ions ( protons ) when it is saturated with water, but does not conduct electrons.
This configuration allows for efficient proton conduction and effective gas diffusion, making it suitable for various applications, including fuel cell vehicles and portable power systems. Research has shown that 5-layer MEAs can provide improved performance under different operating conditions, making them a preferred choice in the industry.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Proton_exchange_membrane_electrolyzer&oldid=1152532274"
Ultrahigh-pressure electrolysis is high-pressure electrolysis operating at 340–690 bars (5,000–10,000 psi). [8] At ultra-high pressures the water solubility and cross-permeation across the membrane of H 2 and O 2 is affecting hydrogen purity, modified PEMs are used to reduce cross-permeation in combination with catalytic H 2 /O 2 recombiners to maintain H 2 levels in O 2 and O 2 levels in ...