Search results
Results from the WOW.Com Content Network
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
In computer science, the segment tree is a data structure used for storing information about intervals or segments. It allows querying which of the stored segments contain a given point. A similar data structure is the interval tree. A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time.
These are data structures used for space partitioning or binary space partitioning. Segment tree; Interval tree; Range tree; Bin; K-d tree; Implicit k-d tree; Min/max k-d tree; Relaxed k-d tree; Adaptive k-d tree; Quadtree; Octree; Linear octree; Z-order; UB-tree; R-tree; R+ tree; R* tree; Hilbert R-tree; X-tree; Metric tree; Cover tree; M-tree ...
The randomized binary search tree, introduced by Martínez and Roura subsequently to the work of Aragon and Seidel on treaps, [7] stores the same nodes with the same random distribution of tree shape, but maintains different information within the nodes of the tree in order to maintain its randomized structure.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
A medial- or length-oriented tree is similar to an augmented tree, but symmetrical, with the binary search tree ordered by the medial points of the intervals. There is a maximum-oriented binary heap in every node, ordered by the length of the interval (or half of the length). Also we store the minimum and maximum possible value of the subtree ...
A full binary tree An ancestry chart which can be mapped to a perfect 4-level binary tree. A full binary tree (sometimes referred to as a proper, [15] plane, or strict binary tree) [16] [17] is a tree in which every node has either 0 or 2 children.
The B-tree generalizes the binary search tree, allowing for nodes with more than two children. [2] Unlike other self-balancing binary search trees, the B-tree is well suited for storage systems that read and write relatively large blocks of data, such as databases and file systems.