Search results
Results from the WOW.Com Content Network
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]
Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" t-test). A typical example of the repeated measures t-test would be where subjects are tested prior to a treatment, say for high blood pressure, and the same subjects are tested again ...
Data can also be imported from CSV and Tab-Separated files or spreadsheets (Microsoft Excel, OpenOffice.org Calc, Gumeric, Google Docs). The main statistical tests available are Independent and Paired t-tests, Wilcoxon signed ranks, Mann–Whitney U, Pearson's chi squared, Kruskal Wallis H, one-way ANOVA, Spearman's R, and Pearson's R.
XLfit is a Microsoft Excel add-in that can perform regression analysis, curve fitting, and statistical analysis. It is approved by the UK National Physical Laboratory and the US National Institute of Standards and Technology [ 1 ] XLfit can generate 2D and 3D graphs and analyze data sets.
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...
A very simple equivalence testing approach is the ‘two one-sided t-tests’ (TOST) procedure. [11] In the TOST procedure an upper (Δ U) and lower (–Δ L) equivalence bound is specified based on the smallest effect size of interest (e.g., a positive or negative difference of d = 0.3).