enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 2 3 = 8 ≠ 3 2 = 9. Also unlike addition and multiplication, exponentiation is not associative. For example, (2 3) 2 = 8 2 = 64, whereas 2 (3 2) = 2 9 = 512. Without parentheses, the conventional order of operations for serial exponentiation in superscript notation is top-down (or right-associative), not bottom-up [22] [23] [24 ...

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = ⁡ or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.

  4. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    Knuth's up-arrow notation. In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1] In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations. Goodstein also suggested the Greek names tetration, pentation ...

  5. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.

  6. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and ...

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    In computing, floating-point arithmetic (FP) is arithmetic that represents subsets of real numbers using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. Numbers of this form are called floating-point numbers. [1]: 3 [2]: 10 For example, 12.345 is a floating-point number in base ten with ...

  9. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The first step of Fermat's proof is to factor the left-hand side [30] (x2 + y2) (x2 − y2) = z2. Since x and y are coprime (this can be assumed because otherwise the factors could be cancelled), the greatest common divisor of x2 + y2 and x2 − y2 is either 2 (case A) or 1 (case B).