Search results
Results from the WOW.Com Content Network
The cipher illustrated here uses a left shift of 3, so that (for example) each occurrence of E in the plaintext becomes B in the ciphertext. In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques.
The key expansion algorithm is illustrated below, first in pseudocode, then example C code copied directly from the reference paper's appendix. Following the naming scheme of the paper, the following variable names are used: w – The length of a word in bits, typically 16, 32 or 64. Encryption is done in 2-word blocks.
Comparison of implementations of message authentication code (MAC) algorithms. A MAC is a short piece of information used to authenticate a message—in other words, to confirm that the message came from the stated sender (its authenticity) and has not been changed in transit (its integrity).
MULTI2 is a symmetric key algorithm with variable number of rounds. It has a block size of 64 bits, and a key size of 64 bits. A 256-bit implementation-dependent substitution box constant is used during key schedule .
To initialize the cipher, the key and IV are written into two of the shift registers, with the remaining bits starting in a fixed pattern; the cipher state is then updated 4 × 288 = 1152 times, so that every bit of the internal state depends on every bit of the key and of the IV in a complex nonlinear way.
ISAAC (indirection, shift, accumulate, add, and count) is a cryptographically secure pseudorandom number generator and a stream cipher designed by Robert J. Jenkins Jr. in 1993. [1] The reference implementation source code was dedicated to the public domain. [2] "I developed (...) tests to break a generator, and I developed the generator to ...
ROT13 is a simple letter substitution cipher that replaces a letter with the 13th letter after it in the Latin alphabet.. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome, used by Julius Caesar in the 1st century BC. [1]
It is essentially a scheme for integrating a message authentication code (MAC) into the operation of a block cipher. In this way, OCB mode avoids the need to use two systems: a MAC for authentication and encryption for confidentiality. This results in lower computational cost compared to using separate encryption and authentication functions.