Search results
Results from the WOW.Com Content Network
Illustration of a transversion: each of the 8 nucleotide changes between a purine and a pyrimidine (in red). The 4 other changes are transitions (in blue).. Transversion, in molecular biology, refers to a point mutation in DNA in which a single (two ring) purine (A or G) is changed for a (one ring) pyrimidine (T or C), or vice versa. [1]
Illustration of a transition: each of the 4 nucleotide changes between purines or between pyrimidines (in blue). The 8 other changes are transversions (in red).. Transition, in genetics and molecular biology, refers to a point mutation that changes a purine nucleotide to another purine (A ↔ G), or a pyrimidine nucleotide to another pyrimidine (C ↔ T).
A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. [1] Point mutations have a variety of effects on the downstream protein product—consequences that are moderately predictable based upon the specifics of the mutation.
The ability for the wrong tautomer of one of the standard nucleic bases to mispair causes a mutation during the process of DNA replication which can be cytotoxic or mutagenic to the cell. These mispairings can result in transition, transversion, frameshift, deletion, and/or duplication mutations. [18]
Each nucleotide is subject to one transition (e.g., T to C) and 2 transversions (e.g., T to A or T to G). Because a site (or a sequence) is subject to twice as many transversions as transitions, the total rate of transversions for a sequence may be higher even when the rate of transitions is higher on a per-path basis.
Early attempts at mutagenesis using radiation or chemical mutagens were non-site-specific, generating random mutations. [2] Analogs of nucleotides and other chemicals were later used to generate localized point mutations, [3] examples of such chemicals are aminopurine, [4] nitrosoguanidine, [5] and bisulfite. [6]
Transitions (A ↔ G or C ↔ T) are more common than transversions (purine (adenine or guanine)) ↔ pyrimidine (cytosine or thymine, or in RNA, uracil)). [17] Perhaps the most common type of mutation in humans is a change in the length of a short tandem repeat (e.g., the CAG repeats underlying various disease-associated mutations).
The combination of SSM events with point mutation is thought to account for the evolution of more complex repeat units. Mutations followed by expansion would result in the formation of new types of adjacent short tandem repeat units. For example, a transversion could change the simple two- base repeat [GA] 10 to [GA] 4 GATA[GA] 2.