Search results
Results from the WOW.Com Content Network
Data science is an interdisciplinary academic field [1] that uses statistics, scientific computing, scientific methods, processing, scientific visualization, algorithms and systems to extract or extrapolate knowledge from potentially noisy, structured, or unstructured data.
Data extraction is the act or process of retrieving data out of (usually unstructured or poorly structured) data sources for further data processing or data storage (data migration). The import into the intermediate extracting system is thus usually followed by data transformation and possibly the addition of metadata prior to export to another ...
Web scraping is the process of automatically mining data or collecting information from the World Wide Web. It is a field with active developments sharing a common goal with the semantic web vision, an ambitious initiative that still requires breakthroughs in text processing, semantic understanding, artificial intelligence and human-computer interactions.
Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.
Data preparation is the first step in data analytics projects and can include many discrete tasks such as loading data or data ingestion, data fusion, data cleaning, data augmentation, and data delivery. [2] The issues to be dealt with fall into two main categories:
Structured data is semantically well-defined data from a chosen target domain, interpreted with respect to category and context. Information extraction is the part of a greater puzzle which deals with the problem of devising automatic methods for text management, beyond its transmission, storage and display.
Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources.The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing.
The user, rather than the database itself, typically initiates data curation and maintains metadata. [8] According to the University of Illinois' Graduate School of Library and Information Science, "Data curation is the active and on-going management of data through its lifecycle of interest and usefulness to scholarship, science, and education; curation activities enable data discovery and ...