Search results
Results from the WOW.Com Content Network
Data preparation is the first step in data analytics projects and can include many discrete tasks such as loading data or data ingestion, data fusion, data cleaning, data augmentation, and data delivery. [2] The issues to be dealt with fall into two main categories:
Data extraction is the act or process of retrieving data out of (usually unstructured or poorly structured) data sources for further data processing or data storage (data migration). The import into the intermediate extracting system is thus usually followed by data transformation and possibly the addition of metadata prior to export to another ...
Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.
Structured data is semantically well-defined data from a chosen target domain, interpreted with respect to category and context. Information extraction is the part of a greater puzzle which deals with the problem of devising automatic methods for text management, beyond its transmission, storage and display.
Aggregators who agree with information providers to extract data without using an OFX standard may reach a lower level of consensual relationship; therefore, "screen scraping" may be used to obtain account data, but for business or other reasons, the aggregator may decide to obtain prior consent and negotiate the terms on which customer data is ...
Azure Data Explorer is a distributed database running on a cluster of compute nodes in Microsoft Azure. It is based on relational database management systems (RDBMS) , supporting entities such as databases, tables , functions, and columns.
The user, rather than the database itself, typically initiates data curation and maintains metadata. [8] According to the University of Illinois' Graduate School of Library and Information Science, "Data curation is the active and on-going management of data through its lifecycle of interest and usefulness to scholarship, science, and education; curation activities enable data discovery and ...
Data integration refers to the process of combining, sharing, or synchronizing data from multiple sources to provide users with a unified view. [1] There are a wide range of possible applications for data integration, from commercial (such as when a business merges multiple databases) to scientific (combining research data from different bioinformatics repositories).