enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  3. Empty lattice approximation - Wikipedia

    en.wikipedia.org/wiki/Empty_lattice_approximation

    In a one-dimensional lattice the number of reciprocal lattice vectors that determine the bands in an energy interval is limited to two when the energy rises. In two and three dimensional lattices the number of reciprocal lattice vectors that determine the free electron bands () increases more rapidly when the length of the wave vector increases ...

  4. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids.

  5. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    Here is the one-body term, the two-body term, the three body term, the number of atoms in the system, the position of atom , etc. , and are indices that loop over atom positions. Note that in case the pair potential is given per atom pair, in the two-body term the potential should be multiplied by 1/2 as otherwise each bond is counted twice ...

  6. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    z + = charge number of cation; z − = charge number of anion; e = elementary charge, 1.6022 × 10 −19 C; ε 0 = permittivity of free space 4 π ε 0 = 1.112 × 10 −10 C 2 /(J·m) r 0 = distance to closest ion; ρ = a constant dependent on the compressibility of the crystal; 30 pm works well for all alkali metal halides

  7. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  8. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    If L is the length of the lattice so that L ≫ a, then the number of ions in the lattice is so big, that when considering one ion, its surrounding is almost linear, and the wavefunction of the electron is unchanged. So now, instead of two boundary conditions we get one circular boundary condition: = (). If N is the number of ions in the ...

  9. Crystal structure prediction - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure_prediction

    For metals and semiconductors one has different rules involving valence electron concentration. However, prediction and rationalization are rather different things. Most commonly, the term crystal structure prediction means a search for the minimum-energy arrangement of its constituent atoms (or, for molecular crystals, of its molecules) in space.