Search results
Results from the WOW.Com Content Network
The integral of secant cubed is a frequent and challenging [1] indefinite integral of elementary calculus: = + + = ( + | + |) + = ( + ) +, | | < where is the inverse Gudermannian function, the integral of the secant function.
The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection , used for marine navigation with constant compass bearing .
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
3.4 Indefinite integrals of inverse trigonometric functions. 3.4.1 Example. ... −1 = sec(x). Nevertheless, certain authors advise against using it, since it is ...
It seems practically impossible the SEC could find a way to sneak three teams into the four-team College Football Playoff. But one analyst thinks there's a way. The CFP has been a hot topic ...
For a definite integral, the bounds change once the substitution is performed and are determined using the equation = , with values in the range < <. Alternatively, apply the boundary terms directly to the formula for the antiderivative.