enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R, then the MAP representation is

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  4. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    This example came from Markov himself. [2] Markov chose 20,000 letters from Pushkin’s Eugene Onegin, classified them into vowels and consonants, and counted the transition probabilities. The stationary distribution is 43.2 percent vowels and 56.8 percent consonants, which is close to the actual count in the book.

  5. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    [1] [2]: 10 It is also called a probability matrix, transition matrix, substitution matrix, or Markov matrix. The stochastic matrix was first developed by Andrey Markov at the beginning of the 20th century, and has found use throughout a wide variety of scientific fields, including probability theory , statistics, mathematical finance and ...

  6. Chapman–Kolmogorov equation - Wikipedia

    en.wikipedia.org/wiki/Chapman–Kolmogorov_equation

    where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t, it is sufficient to raise the transition matrix of jump one to the power of t, that is

  7. Transition matrix - Wikipedia

    en.wikipedia.org/wiki/Transition_matrix

    Change-of-basis matrix, associated with a change of basis for a vector space. Stochastic matrix , a square matrix used to describe the transitions of a Markov chain . State-transition matrix , a matrix whose product with the state vector x {\displaystyle x} at an initial time t 0 {\displaystyle t_{0}} gives x {\displaystyle x} at a later time t ...

  8. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...

  9. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.