Ads
related to: lyapunov functions definition math worksheetsixl.com has been visited by 100K+ users in the past month
IXL is easy to use with a variety of subjects - Cummins Life
- Skill Recommendations
Get a Personalized Feed of Practice
Topics Based On Your Precise Level.
- Addition
Learn to Add Everything From Single
Digits to Fractions. Fun for Kids!
- IXL Analytics
Get Real-Time Reports on Student
Progress & Weekly Email Updates.
- English for K-12
Unlock The World Of Words With Fun,
Interactive Practice. Try Us Now!
- Skill Recommendations
Search results
Results from the WOW.Com Content Network
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector. A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state.
The definition for discrete-time systems is almost identical to that for continuous-time systems. The definition below provides this, using an alternate language commonly used in more mathematical texts. Let (X, d) be a metric space and f : X → X a continuous function. A point x in X is said to be Lyapunov stable, if,
The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.
Ads
related to: lyapunov functions definition math worksheetsixl.com has been visited by 100K+ users in the past month
IXL is easy to use with a variety of subjects - Cummins Life