Search results
Results from the WOW.Com Content Network
In chemistry, azide (/ ˈ eɪ z aɪ d /, AY-zyd) is a linear, polyatomic anion with the formula N − 3 and structure − N=N + =N −. It is the conjugate base of hydrazoic acid HN 3. Organic azides are organic compounds with the formula RN 3, containing the azide functional group. [1] The dominant application of azides is as a propellant in ...
Expressing resonance when drawing Lewis structures may be done either by drawing each of the possible resonance forms and placing double-headed arrows between them or by using dashed lines to represent the partial bonds (although the latter is a good representation of the resonance hybrid which is not, formally speaking, a Lewis structure ...
The azide functional group can be shown by two resonance structures. An organic azide is an organic compound that contains an azide (– N 3) functional group. [1] Because of the hazards associated with their use, few azides are used commercially although they exhibit interesting reactivity for researchers.
Below is an example of how NRT may generate a list of resonance structures. (1) Given an input wavefunction, NRT creates a list of reference Lewis structures. The LEWIS option tests each structure and rejects those that do not conform to the Lewis bonding theory (i.e., those that do not fulfill the octet rule, pose unreasonable formal charges ...
According to both ab initio calculations and the experimental X-ray structure, the cation is planar, symmetric, and approximately V-shaped, with bond angles 111° at the central atom (angle N2–N3–N4) and 168° at the second and fourth atoms (angles N1–N2–N3 and N3–N4–N5). The bond lengths for N1–N2 and N4–N5 are 1.10 Å and the ...
In resonance structures, major and minor contributing structures may exist. For amides, for example, NBO calculations show that the structure with a carbonyl double bond is the dominant Lewis structure. However, in NBO calculations, "covalent-ionic resonance" is not needed due to the inclusion of bond-polarity effects in the resonance ...
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.