Search results
Results from the WOW.Com Content Network
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control.
An optical modulator is an optical device which is used to modulate a beam of light with a perturbation device. It is a kind of transmitter to convert information to optical binary signal through optical fiber (optical waveguide) or transmission medium of optical frequency in fiber optic communication.
The refractive modulators are named by the respective effect: i.e. electrooptic modulators, acousto-optic modulators etc. The effect of a refractive modulator of any of the types mentioned above is to change the phase of a light beam. The phase modulation can be converted into amplitude modulation using an interferometer or directional coupler.
An acousto-optic modulator By varying the parameters of the acoustic wave, including the amplitude , phase , frequency and polarization , properties of the optical wave may be modulated. The acousto-optic interaction also makes it possible to modulate the optical beam by both temporal and spatial modulation.
Own work based on: Acousto-optic Modulator.png by Cwbm (commons) ... This diagram uses embedded text that can be easily translated using a text editor.
Related to this amplitude modulation (AM), active mode locking is frequency-modulation (FM) mode locking, which uses a modulator device based on the acousto-optic effect. This device, when placed in a laser cavity and driven with an electrical signal, induces a small, sinusoidally varying frequency shift in the light passing through it.
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror .
An acousto-optical spectrometer (AOS) is based on the diffraction of light by ultrasonic waves. [1] A piezoelectric transducer, driven by the RF signal (from the receiver), generates an acoustic wave in a crystal (the so-called Bragg-cell). This acoustic wave modulates the refractive index and induces a phase grating.