enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Simplified example of training a neural network in object detection: The network is trained by multiple images that are known to depict starfish and sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and ...

  3. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.

  4. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Text-to-image models began to be developed in the mid-2010s during the beginnings of the AI boom, as a result of advances in deep neural networks.

  5. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    Above: An image classifier, an example of a neural network trained with a discriminative objective. Below: A text-to-image model, an example of a network trained with a generative objective. Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data.

  6. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    1D convolutional neural network feed forward example. Although fully connected feedforward neural networks can be used to learn features and classify data, this architecture is generally impractical for larger inputs (e.g., high-resolution images), which would require massive numbers of neurons because each pixel is a relevant input feature.

  7. Glossary of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_artificial...

    Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...

  8. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape.

  9. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...