enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.

  3. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    Global study of residual Bouguer anomaly data indicates that crustal thickness of Mars varies from 5.8 km to 102 km. [5] Two major peaks at 32 km and 58 km are identified from an equal-area histogram of crustal thickness. [5] These two peaks are linked to the crustal dichotomy of Mars. [5]

  4. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  5. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick. [44] [54] Mars's iron and nickel core is completely molten, with no solid inner core. [55] [56] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen. [57] [58]

  6. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5] The Parker Solar Probe (via Venus) plans a maximum C 3 of 154 km 2 /s 2. [6] Typical ballistic C 3 (km 2 /s 2) to get from Earth to various planets: Mars 8-16, [7] Jupiter 80, Saturn or Uranus 147. [8] To Pluto (with its orbital inclination) needs about 160–164 km 2 /s 2. [9]

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; [1] the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation .

  9. Mean radius (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Mean_radius_(astronomy)

    For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.