enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Code-excited linear prediction - Wikipedia

    en.wikipedia.org/wiki/Code-excited_linear_prediction

    Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).

  3. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).

  4. Range coding - Wikipedia

    en.wikipedia.org/wiki/Range_coding

    Suppose we want to encode the message "AABA<EOM>", where <EOM> is the end-of-message symbol. For this example it is assumed that the decoder knows that we intend to encode exactly five symbols in the base 10 number system (allowing for 10 5 different combinations of symbols with the range [0, 100000)) using the probability distribution {A: .60; B: .20; <EOM>: .20}.

  5. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1]In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text.

  6. Arithmetic coding - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_coding

    The encoder divides the current interval into sub-intervals, each representing a fraction of the current interval proportional to the probability of that symbol in the current context. Whichever interval corresponds to the actual symbol that is next to be encoded becomes the interval used in the next step. Example: for the four-symbol model above:

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:

  8. Polar code (coding theory) - Wikipedia

    en.wikipedia.org/wiki/Polar_code_(coding_theory)

    The code construction is based on a multiple recursive concatenation of a short kernel code which transforms the physical channel into virtual outer channels. When the number of recursions becomes large, the virtual channels tend to either have high reliability or low reliability (in other words, they polarize or become sparse), and the data ...

  9. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...