Search results
Results from the WOW.Com Content Network
The problem of finding all maximal subsequences is defined as follows: Given a list of real numbered scores ,, …,, find the list of contiguous subsequences that gives the greatest total score, where the score of each subsequence , =. The subsequences must be disjoint (non-overlapping) and have a positive score.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
However, finding the median is itself a selection problem, on the entire original input. Trying to find it by a recursive call to a selection algorithm would lead to an infinite recursion, because the problem size would not decrease in each call. [7] Quickselect chooses the pivot uniformly at random from the input values.
In the example given above that is achieved on identifying 11 as next prime, giving a list of all primes less than or equal to 80. Note that numbers that will be discarded by a step are still used while marking the multiples in that step, e.g., for the multiples of 3 it is 3 × 3 = 9 , 3 × 5 = 15 , 3 × 7 = 21 , 3 × 9 = 27 , ..., 3 × 15 = 45 ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The algorithm divides the input list into two parts: a sorted sublist of items which is built up from left to right at the front (left) of the list and a sublist of the remaining unsorted items that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list.
This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not the only solution: for instance, 0, 4, 6, 9, 11, 15 0, 2, 6, 9, 13, 15 0, 4, 6, 9, 13, 15. are other increasing subsequences of equal length in the same input sequence.