enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    A system of equations whose left-hand sides are linearly independent is always consistent. Putting it another way, according to the Rouché–Capelli theorem, any system of equations (overdetermined or otherwise) is inconsistent if the rank of the augmented matrix is greater than the rank of the coefficient matrix. If, on the other hand, the ...

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    So there is a unique solution to the original system of equations. Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish ...

  4. Indeterminate system - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_system

    In linear systems, indeterminacy occurs if and only if the number of independent equations (the rank of the augmented matrix of the system) is less than the number of unknowns and is the same as the rank of the coefficient matrix. For if there are at least as many independent equations as unknowns, that will eliminate any stretches of overlap ...

  5. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives.

  6. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [ 1 ] [ 2 ] The state-space method is characterized by the algebraization of general system theory , which makes it possible to use Kronecker vector-matrix structures .

  7. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: = where the n × n matrix A has a nonzero determinant, and the vector = (, …,) is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns ...

  8. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A system of linear equations is said to be in row echelon form if its augmented matrix is in row echelon form. Similarly, a system of linear equations is said to be in reduced row echelon form or in canonical form if its augmented matrix is in reduced row echelon form. The canonical form may be viewed as an explicit solution of the linear system.

  9. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential has applications to systems of linear differential equations. (See also matrix differential equation .) Recall from earlier in this article that a homogeneous differential equation of the form y ′ = A y {\displaystyle \mathbf {y} '=A\mathbf {y} } has solution e At y (0) .