enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as follows:

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...

  4. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, a significand of 8 000 000 is encoded as binary 0111 1010000100 1000000000, with the leading 4 bits encoding 7; the first significand which requires a 24th bit (and thus the second encoding form) is 2 23 = 8 388 608. In the above cases, the value represented is: (−1) sign × 10 exponent−101 × significand

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The 24-bit significand will stop at position 23, shown as the underlined bit 0 above. The next bit, at position 24, is called the round bit or rounding bit . It is used to round the 33-bit approximation to the nearest 24-bit number (there are specific rules for halfway values , which is not the case here).

  6. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...

  7. decimal32 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Decimal32_floating-point...

    (−1) sign × 10 exponent−101 × significand, with the significand understood as positive integer. Alternatively it can be understood as (−1) sign × 10 exponent−95 × significand with the significand digits understood as d 0 . d −1 d −2 d −3 d −4 d −5 d −6, note the radix dot making it a fraction.

  8. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    The 53-bit significand precision gives from 15 to 17 significant decimal digits precision (2 −53 ≈ 1.11 × 10 −16). If a decimal string with at most 15 significant digits is converted to the IEEE 754 double-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final ...

  9. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [3] [4] so (for most values) the actual multiplier for exponent x is 2 x−7. All IEEE 754 principles should be ...