enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  3. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [23] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  4. Irreversible process - Wikipedia

    en.wikipedia.org/wiki/Irreversible_process

    A Joule expansion is an example of classical thermodynamics, as it is easy to work out the resulting increase in entropy. It occurs where a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated; the partition between the two parts of the container is ...

  5. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The second law of thermodynamics deals only with changes of entropy (). The absolute entropy (S) of a system may be determined using the third law of thermodynamics , which specifies that the entropy of all perfectly crystalline substances is zero at the absolute zero of temperature. [ 4 ]

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + ⁡ ⁡. In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...

  8. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    It is overwhelmingly probable for the gas to spread out to fill the container evenly, which is the new equilibrium macrostate of the system. This is an example illustrating the second law of thermodynamics: the total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value.

  9. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    where is the amount of energy the system gains by heating, is the temperature of the surroundings, and is the change in entropy. The equal sign refers to a reversible process , which is an imagined idealized theoretical limit, never actually occurring in physical reality, with essentially equal temperatures of system and surroundings.