Search results
Results from the WOW.Com Content Network
The longest alternating subsequence problem has also been studied in the setting of online algorithms, in which the elements of are presented in an online fashion, and a decision maker needs to decide whether to include or exclude each element at the time it is first presented, without any knowledge of the elements that will be presented in the future, and without the possibility of recalling ...
Black dots represent candidates that would have to be considered by the simple algorithm and the black lines are connections that create common subsequences of length 3. Red dots represent k-candidates that are considered by the Hunt–Szymanski algorithm and the red line is the connection that creates a common subsequence of length 3.
Comparison of two revisions of an example file, based on their longest common subsequence (black) A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Compute a longest common subsequence of these two strings, and let , be the random variable whose value is the length of this subsequence. Then the expected value of λ n , k {\displaystyle \lambda _{n,k}} is (up to lower-order terms) proportional to n , and the k th Chvátal–Sankoff constant γ k {\displaystyle \gamma _{k}} is the constant ...
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
The longest common subsequence of sequences 1 and 2 is: LCS (SEQ 1,SEQ 2) = CGTTCGGCTATGCTTCTACTTATTCTA. This can be illustrated by highlighting the 27 elements of the longest common subsequence into the initial sequences: SEQ 1 = A CG G T G TCG T GCTATGCT GA T G CT G ACTTAT A T G CTA SEQ 2 = CGTTCGGCTAT C G TA C G TTCTA TT CT A T G ATT T CTA A
In computer science, the longest increasing subsequence problem aims to find a subsequence of a given sequence in which the subsequence's elements are sorted in an ascending order and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous or unique.