Search results
Results from the WOW.Com Content Network
The absorption neutron cross section of an isotope of a chemical element is the effective cross-sectional area that an atom of that isotope presents to absorption and is a measure of the probability of neutron capture. It is usually measured in barns. Absorption cross section is often highly dependent on neutron energy. In general, the ...
Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and the nuclear ...
Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays , or particles such as beta particles , alpha particles , fission products , and ...
The most common formulations are the time-absorption and the multiplication eigenvalues, also known as the alpha and k eigenvalues. The alpha and k are the tunable quantities. K-eigenvalue problems are the most common in nuclear reactor analysis. The number of neutrons produced per fission is multiplicatively modified by the dominant eigenvalue.
Illustration of a proton–proton chain, from hydrogen forming deuterium, helium-3, and regular helium-4. Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.
In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...
The most common nuclide of the common chemical element lead, 208 Pb, has 82 protons and 126 neutrons, for example. [10] The table of nuclides comprises all the known nuclides. Even though it is not a chemical element, the neutron is included in this table. [11] Nuclear fission caused by absorption of a neutron by uranium-235.
A possible nuclear fission chain reaction: 1) A uranium-235 atom absorbs a neutron and fissions into two fission fragments, releasing three new neutrons and a large amount of binding energy. 2) One of those neutrons is absorbed by an atom of uranium-238, and does not continue the reaction. Another neutron leaves the system without being absorbed.