Search results
Results from the WOW.Com Content Network
The reciprocal function y = 1 / x . As x approaches zero from the right, y tends to positive infinity. As x approaches zero from the left, y tends to negative infinity. In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case.
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1. First, initialize the result to 1 and preserve the value of b in the variable x: (=).
Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.
Use the extended Euclidean algorithm to compute k −1, the modular multiplicative inverse of k mod 2 w, where w is the number of bits in a word. This inverse will exist since the numbers are odd and the modulus has no odd factors. For each number in the list, multiply it by k −1 and take the least significant word of the result.
In many cases, such as order theory, the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function, as a generalization of the inverse of the indicator function in elementary number theory, the Möbius function. (See paragraph below about the use of the inverse in classical recursion theory.)
A common type of implicit function is an inverse function. Not all functions have a unique inverse function. If g is a function of x that has a unique inverse, then the inverse function of g, called g −1, is the unique function giving a solution of the equation = for x in terms of y. This solution can then be written as