enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The above equations are the microscopic version of Maxwell's equations, expressing the electric and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This is sometimes called the "general" form, but the macroscopic version below is equally general, the difference being one of bookkeeping.

  3. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  4. James Clerk Maxwell - Wikipedia

    en.wikipedia.org/wiki/James_Clerk_Maxwell

    Oliver Heaviside reduced the complexity of Maxwell's theory down to four partial differential equations, [118] known now collectively as Maxwell's Laws or Maxwell's equations. Although potentials became much less popular in the nineteenth century, [119] the use of scalar and vector potentials is now standard in the solution of Maxwell's ...

  5. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .

  6. A Dynamical Theory of the Electromagnetic Field - Wikipedia

    en.wikipedia.org/wiki/A_Dynamical_Theory_of_the...

    Eighteen of Maxwell's twenty original equations can be vectorized into six equations, labeled to below, each of which represents a group of three original equations in component form. The 19th and 20th of Maxwell's component equations appear as and below, making a total of eight vector equations. These are listed below in Maxwell's original ...

  7. On Physical Lines of Force - Wikipedia

    en.wikipedia.org/wiki/On_Physical_Lines_of_Force

    The four modern Maxwell's equations, as laid down in a publication by Oliver Heaviside in 1884, had all appeared in Maxwell's 1861 paper. Heaviside however presented these equations in modern vector format using the nabla operator (∇) devised by William Rowan Hamilton in 1837, Of Maxwell's work, Albert Einstein wrote: [4]

  8. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector , + = or , + =, which expresses the conservation of linear momentum and energy by electromagnetic interactions.

  9. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    Because of the linearity of Maxwell's equations in a vacuum, solutions can be decomposed into a superposition of sinusoids. This is the basis for the Fourier transform method for the solution of differential equations. The sinusoidal solution to the electromagnetic wave equation takes the form