Search results
Results from the WOW.Com Content Network
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
However, for weak acids, a quadratic equation must be solved, and for weak bases, a cubic equation is required. In general, a set of non-linear simultaneous equations must be solved. Water itself is a weak acid and a weak base, so its dissociation must be taken into account at high pH and low solute concentration (see amphoterism).
Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...
One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.
Bases and acids are seen as chemical opposites because the effect of an acid is to increase the hydronium (H 3 O +) concentration in water, whereas bases reduce this concentration. A reaction between aqueous solutions of an acid and a base is called neutralization , producing a solution of water and a salt in which the salt separates into its ...
The model assigned E and C parameters to many Lewis acids and bases. Each acid is characterized by an E A and a C A. Each base is likewise characterized by its own E B and C B. The E and C parameters refer, respectively, to the electrostatic and covalent contributions to the strength of the bonds that the acid and base will form. The equation is
The model assigned E and C parameters to many Lewis acids and bases. Each acid is characterized by an E A and a C A. Each base is likewise characterized by its own E B and C B. The E and C parameters refer, respectively, to the electrostatic and covalent contributions to the strength of the bonds that the acid and base will form. The equation is
The alkyl (R') group is named first. The R−C(=O)O part is then named as a separate word based on the carboxylic acid name, with the ending changed from "-oic acid" to "-oate" or "-carboxylate" For example, CH 3 CH 2 CH 2 CH 2 COOCH 3 is methyl pentanoate, and (CH 3) 2 CHCH 2 CH 2 COOCH 2 CH 3 is ethyl 4-methylpentanoate.