Ads
related to: long division 3 digit by 1 digit with remaindersgenerationgenius.com has been visited by 100K+ users in the past month
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Teachers, Try It Free
Get free access for 30 days
No credit card of commitment needed
- Loved By Teachers
See What the Teachers Have To
Say About Generation Genius.
- Grades K-2 Math Lessons
Search results
Results from the WOW.Com Content Network
The remainder is multiplied by 3 to get feet and carried up to the feet column. Long division of the feet gives 1 remainder 29 which is then multiplied by twelve to get 348 inches. Long division continues with the final remainder of 15 inches being shown on the result line.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The reason for the cyclic behavior is apparent from an arithmetic exercise of long division of 1 / 7 : the sequential remainders are the cyclic sequence {1, 3, 2, 6, 4, 5}. See also the article 142,857 for more properties of this cyclic number.
A long division of 1 by 7 gives: 0.142857... 7 ) 1.000000 .7 3 28 2 14 6 56 4 35 5 49 1 At the last step, 1 reappears as the remainder. The cyclic remainders are {1, 3, 2, 6, 4, 5}. We rewrite the quotients with the corresponding dividend/remainders above them at all the steps:
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
For example, through the standard addition algorithm, the sum can be obtained by following three rules: a) line up the digits of each addend by place value, longer digit addends should go on top, b) each addend can be decomposed -- ones are added with ones, tens are added with tens, and so on, and c) if the sum of the digits of the current place value is ten or greater, then the number must be ...
Let r = 1. Let n = 0. loop: Let t = t + 1 Let x = r ⋅ b Let d = int(x / p) Let r = x mod p Let n = n ⋅ b + d If r ≠ 1 then repeat the loop. if t = p − 1 then n is a cyclic number. This procedure works by computing the digits of 1/p in base b, by long division. r is the remainder at each step, and d is the digit produced. The step n = n ...
Ads
related to: long division 3 digit by 1 digit with remaindersgenerationgenius.com has been visited by 100K+ users in the past month