Search results
Results from the WOW.Com Content Network
A specific property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by ...
A salt or acid contaminant level exceeding even 100 parts per trillion (ppt) in otherwise ultra-pure water begins to noticeably lower its resistivity by up to several kΩ·m. [citation needed] In pure water, sensitive equipment can detect a very slight electrical conductivity of 0.05501 ± 0.0001 μS/cm at 25.00 °C. [56]
When one mole of water is added to a large volume of water at 25 °C, the volume increases by 18 cm 3. The molar volume of pure water would thus be reported as 18 cm 3 mol −1. However, addition of one mole of water to a large volume of pure ethanol results in an increase in volume of only 14 cm 3. The reason that the increase is different is ...
Specific heat capacity is an intensive property of a substance, an intrinsic characteristic that does not depend on the size or shape of the amount in consideration. (The qualifier "specific" in front of an extensive property often indicates an intensive property derived from it. [12])
An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined.
A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...
For example, at 20 mass percents ethanol, the solution has a volume of 1.0326 liters per kg at 20 °C, while pure water is 1.0018 L/kg (1.0018 cc/g). [5] The apparent volume of the added ethanol is 1.0326 L – 0.8 kg x 1.0018 L/kg = 0.2317 L.
The state postulate is a term used in thermodynamics that defines the given number of properties to a thermodynamic system in a state of equilibrium. It is also sometimes referred to as the state principle. [1] The state postulate allows a finite number of properties to be specified in order to fully describe a state of thermodynamic equilibrium.