Search results
Results from the WOW.Com Content Network
Hemodynamics explains the physical laws that govern the flow of blood in the blood vessels. Blood flow ensures the transportation of nutrients , hormones , metabolic waste products, oxygen , and carbon dioxide throughout the body to maintain cell-level metabolism , the regulation of the pH , osmotic pressure and temperature of the whole body ...
Although the above relationship is true for the hemodynamic factors that determine the flow of blood from the veins back to the heart, it is important not to lose sight of the fact that blood flow through the entire systemic circulation represents both the cardiac output and the venous return, which are equal in the steady-state because the ...
The classic definition by MP Spencer and AB Denison of compliance is the change in arterial blood volume due to a given change in arterial blood pressure ().They wrote this in the "Handbook of Physiology" in 1963 in work entitled "Pulsatile Flow in the Vascular System".
Blood flow through the left coronary artery is at a maximum during diastole (in contrast to the rest of systemic circulation, which has a maximum blood flow during systole.) splanchnic circulation: 15%: low: Flow increases during digestion. hepatic circulation: 15%: Part of portal venous system, so oncotic pressure is very low renal circulation ...
A lumped parameter cardiovascular model is a zero-dimensional mathematical model used to describe the hemodynamics of the cardiovascular system. Given a set of parameters that have a physical meaning (e.g. resistances to blood flow), it allows to study the changes in blood pressures or flow rates throughout the cardiovascular system.
In general, decrease in blood flow to the brain can be a result of thrombosis causing a partial or full blockage of blood vessels, hypotension in systemic circulation (and consequently the brain), or cardiac arrest. This decrease in blood flow in the cerebral vascular system can result in a buildup of metabolic wastes generated by neurons and ...
The hemodynamics of the aorta is an ongoing field of research in which the goal is to identify what flow patterns and subsequent forces occur within the thoracic aorta. These patterns and forces are used to identify the presence and severity of cardiovascular diseases such as aortic aneurysm and atherosclerosis . [ 1 ]
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.