Search results
Results from the WOW.Com Content Network
A rectangular cuboid (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron ...
A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...
Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron.
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.
For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron, the dual to a cube, has the ƒ-vector (6,12,8).
An almost-perfect cuboid has 6 out of the 7 lengths as rational. Such cuboids can be sorted into three types, called body, edge, and face cuboids. [14] In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f ...
Faces are reduced to half as many sides, and square faces degenerate into edges. For example, the tetrahedron is an alternated cube, h{4,3}. Diminishment is a more general term used in reference to Johnson solids for the removal of one or more vertices, edges, or faces of a polytope, without disturbing the other vertices.
A cuboid has twelve face diagonals (two on each of the six faces), and it has four space diagonals. [2] The cuboid's face diagonals can have up to three different lengths, since the faces come in congruent pairs and the two diagonals on any face are equal. The cuboid's space diagonals all have the same length.