Search results
Results from the WOW.Com Content Network
Releasing hormones and inhibiting hormones are hormones whose main purpose is to control the release of other hormones, either by stimulating or inhibiting their release. They are also called liberins ( / ˈ l ɪ b ə r ɪ n z / ) and statins ( / ˈ s t æ t ɪ n z / ) (respectively), or releasing factors and inhibiting factors .
The hypothalamic–pituitary–somatotropic axis (HPS axis), or hypothalamic–pituitary–somatic axis, also known as the hypothalamic–pituitary–growth axis, is a hypothalamic–pituitary axis which includes the secretion of growth hormone (GH; somatotropin) from the somatotropes of the pituitary gland into the circulation and the subsequent stimulation of insulin-like growth factor 1 ...
In posterior pituitary we have hormones that control absorption of water and oxytocin. Anterior hypophysis, neurosecretory cells which release hormones. There is a pituitary portal system, with which the hormones are transported. These hormones are prolactin, growth hormone, TSH, adrenocorticotropic hormone, FSH and LH.
Parvocellular neurosecretory cells are small neurons that produce hypothalamic releasing and inhibiting hormones. The cell bodies of these neurons are located in various nuclei of the hypothalamus or in closely related areas of the basal brain, mainly in the medial zone of the hypothalamus.
In the hypothalamic–adenohypophyseal axis, releasing hormones, also known as hypophysiotropic or hypothalamic hormones, are released from the median eminence, a prolongation of the hypothalamus, into the hypophyseal portal system, which carries them to the anterior pituitary where they exert their regulatory functions on the secretion of ...
Fatty acids also affect insulin secretion. In type 2 diabetes, fatty acids are able to potentiate insulin release to compensate the increment need of insulin. It was found that the β-cells express free fatty acid receptors at their surface, through which fatty acids can impact the function of β-cells.
growth hormone release–inhibiting hormone or somatotropin release–inhibiting factor or somatotropin release–inhibiting hormone) GHIH or GHRIH or SRIF or SRIH Peptide: hypothalamus, islets of Langerhans, gastrointestinal system: delta cells in islets Neuroendocrince cells of the Periventricular nucleus in hypothalamus: Somatostatin ...
Insulin release is stimulated also by beta-2 receptor stimulation and inhibited by alpha-1 receptor stimulation. In addition, cortisol, glucagon and growth hormone antagonize the actions of insulin during times of stress. Insulin also inhibits fatty acid release by hormone-sensitive lipase in adipose tissue. [8]