Search results
Results from the WOW.Com Content Network
In an inertial frame of reference (subscripted "in"), Euler's second law states that the time derivative of the angular momentum L equals the applied torque: = For point particles such that the internal forces are central forces, this may be derived using Newton's second law.
A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.
The balance of angular momentum or Euler's second law in classical mechanics is a law of physics, stating that to alter the angular momentum of a body a torque must be applied to it. An example of use is the playground merry-go-round in the picture.
When the center of mass is not coincident with the coordinate frame (that is, when c is nonzero), the translational and angular accelerations (a and α) are coupled, so that each is associated with force and torque components.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
Under a constant torque of magnitude τ, the speed of precession Ω P is inversely proportional to L, the magnitude of its angular momentum: = , where θ is the angle between the vectors Ω P and L. Thus, if the top's spin slows down (for example, due to friction), its angular momentum decreases and so the rate of precession increases.
A torque converter is a device, usually implemented as a type of fluid coupling, that transfers rotating power from a prime mover, like an internal combustion engine, to a rotating driven load. In a vehicle with an automatic transmission , the torque converter connects the prime mover to the automatic gear train, which then drives the load.