Search results
Results from the WOW.Com Content Network
Acetylcholine binds to nicotinic acetylcholine receptors of alpha-motor neurons. [3] The somatic nervous system controls all voluntary muscular systems within the body, and the process of voluntary reflex arcs. [10] The basic route of nerve signals within the efferent somatic nervous system involves a sequence that begins in the upper cell ...
A motor neuron (or motoneuron or efferent neuron [1]) is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. [2]
The PNS includes motor neurons, mediating voluntary movement; the autonomic nervous system, comprising the sympathetic nervous system and the parasympathetic nervous system and regulating involuntary functions; and the enteric nervous system, a semi-independent part of the nervous system whose function is to control the gastrointestinal system.
The motor cortex can be divided into three areas: 1. The primary motor cortex is the main contributor to generating neural impulses that pass down to the spinal cord and control the execution of movement. However, some of the other motor areas in the brain also play a role in this function.
Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the ...
These include sensory neurons that transmute physical stimuli such as light and sound into neural signals, and motor neurons that transmute neural signals into activation of muscles or glands; however in many species the great majority of neurons participate in the formation of centralized structures (the brain and ganglia) and they receive all ...
Close to the midline are the motor efferent nuclei, such as the oculomotor nucleus, which control skeletal muscle. Just lateral to this are the autonomic (or visceral) efferent nuclei. There is a separation, called the sulcus limitans , and lateral to this are the sensory nuclei .
reticulospinal tract: connects the reticular system, a diffuse region of gray matter in the brain stem, to the spinal cord. It also contributes to muscle tone and influences autonomic functions. lateral vestibulospinal tract: Connects the brain stem nuclei of the vestibular system with the spinal cord. This allows posture, movement, and balance ...