enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .

  4. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    For example, when computing x 2 k1, the binary method requires k1 multiplications and k1 squarings. However, one could perform k squarings to get x 2 k and then multiply by x −1 to obtain x 2 k1. To this end we define the signed-digit representation of an integer n in radix b as

  5. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  6. Double exponential function - Wikipedia

    en.wikipedia.org/wiki/Double_exponential_function

    A double exponential function is a constant raised to the power of an exponential function. The general formula is () = = (where a>1 and b>1), which grows much more quickly than an exponential function. For example, if a = b = 10: f(x) = 10 10 x; f(0) = 10; f(1) = 10 10; f(2) = 10 100 = googol; f(3) = 10 1000

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    On the other hand, () is "the number of ways to arrange flags on flagpoles", [8] where all flags must be used and each flagpole can have any number of flags. Equivalently, this is the number of ways to partition a set of size n {\displaystyle n} (the flags) into x {\displaystyle x} distinguishable parts (the poles), with a linear order on the ...

  8. Prime power - Wikipedia

    en.wikipedia.org/wiki/Prime_power

    Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo p n (that is, the group of units of the ring Z/p n Z) is cyclic. [ 1 ] The number of elements of a finite field is always a prime power and conversely, every prime power occurs as the number of elements in some finite ...

  9. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Visualisation of powers of 10 from one to 1 trillion. In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ...