Search results
Results from the WOW.Com Content Network
An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.
Heteroscedasticity-consistent standard errors (HCSE), while still biased, improve upon OLS estimates. [2] HCSE is a consistent estimator of standard errors in regression models with heteroscedasticity. This method corrects for heteroscedasticity without altering the values of the coefficients.
White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors, were proposed by Halbert White in 1980. [1]
Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1 . If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.
In Stata, the command newey produces Newey–West standard errors for coefficients estimated by OLS regression. [13] In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [14] In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West.
This is the basis of the Breusch–Pagan test. It is a chi-squared test: the test statistic is distributed nχ 2 with k degrees of freedom. If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed.
There should then be a later stage of analysis to examine whether the errors in the predictions from the regression behave in the same way across the dataset. Thus the question becomes one of the homogeneity of the distribution of the residuals, as the explanatory variables change. See regression analysis.
The cointegration test on does not follow a standard distribution; The validity of the long-run parameters in the first regression stage where one obtains the residuals cannot be verified because the distribution of the OLS estimator of the cointegrating vector is highly complicated and non-normal