Search results
Results from the WOW.Com Content Network
Optofluidic waveguides are based on principles of traditional optical waveguides and microfluidic techniques used to maintain gradients or boundaries between flowing fluids. Yang et al. used microfluidic techniques based on laminar flow to generate fluid-based gradient-indices of refraction . [ 6 ]
Optofluidic waveguides, single molecule optical analysis. United States: Caltech: Yang Biophotonics Group [30] Optofluidic Microscopy, Imaging, OCT. United States: UC San Diego: Ultrafast and Nanoscale Optics Group (Fainman) [31] Nanoscale lasers, optofluidic switches, silicon devices. United States: University of Michigan: Sherman Fan Lab [32]
A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed. TIRFM is an imaging modality which uses the excitation of fluorescent cells in a thin optical specimen section that is supported on a glass slide.
For illumination, a laser light-sheet is used, i.e. a laser beam which is focused only in one direction (e.g. using a cylindrical lens). A second method uses a circular beam scanned in one direction to create the lightsheet. As only the actually observed section is illuminated, this method reduces the photodamage and stress induced on a living ...
Fluorescence NSOM is a highly popular and sensitive technique which makes use of fluorescence for near field imaging, and is especially suited for biological applications. The technique of choice here is apertureless back to the fiber emission in constant shear force mode. This technique uses merocyanine-based dyes embedded in an appropriate ...
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
NORM uses object surface scanning by stochastically moving nanoparticles. Through the microscope, nanoparticles look like symmetric round spots. The spot width is equivalent to the point spread function (~ 250 nm) and is defined by the microscope resolution. Lateral coordinates of the given particle can be evaluated with a precision much higher ...
[1] [2] A fluorescence microscope is any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image. [3]