Search results
Results from the WOW.Com Content Network
Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal rotation period). This is similar to how the time kept by a sundial can be used to find the location of the Sun
A sidereal rotation is the time it takes the Earth to make one revolution with rotation to the stars, approximately 23 hours 56 minutes 4 seconds. A mean solar day is about 3 minutes 56 seconds longer than a mean sidereal day, or 1 ⁄ 366 more than a mean sidereal day.
A sidereal day is about 4 minutes less than a solar day of 24 hours (23 hours 56 minutes and 4.09 seconds), or 0.99726968 of a solar day of 24 hours. [7] There are about 366.2422 stellar days in one mean tropical year (one stellar day more than the number of solar days). [8]
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.
It is caused by Earth's rotation around its axis, so almost every star appears to follow a circular arc path, called the diurnal circle, [1] often depicted in star trail photography. The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day.
The horizontal, or altitude-azimuth, system is based on the position of the observer on Earth, which revolves around its own axis once per sidereal day (23 hours, 56 minutes and 4.091 seconds) in relation to the star background. The positioning of a celestial object by the horizontal system varies with time, but is a useful coordinate system ...
The sidereal day is actually 23:56:04 (to the nearest second). Loraof 13:48, 10 April 2017 (UTC) No they don't go up to ~23:56:04 then roll over. Those are solar seconds. The point of sidereal clocks is to show the currently highest right ascension so they go up to 24 o'clock = 0 o'clock. Then 00:00:01 or infinitesimally close to zero if it's a ...
This page was last edited on 4 February 2020, at 23:19 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply.