Search results
Results from the WOW.Com Content Network
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Symbolic integration of the algebraic function f(x) = x / √ x 4 + 10x 2 − 96x − 71 using the computer algebra system Axiom. In mathematics and computer science, [1] computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other ...
MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory"), which is a system for numerical computation built 15 years later at the University of New Mexico. In 1987, Hewlett-Packard introduced the first hand-held calculator CAS with the HP-28 series . [ 1 ]
In computer science, symbolic execution (also symbolic evaluation or symbex) is a means of analyzing a program to determine what inputs cause each part of a program to execute. An interpreter follows the program, assuming symbolic values for inputs rather than obtaining actual inputs as normal execution of the program would.
Symbolic simulation is a form of simulation where many possible executions of a system are considered simultaneously. This is typically achieved by augmenting the domain over which the simulation takes place. A symbolic variable can be used in the simulation state representation in order to index multiple executions of the system. [1]
In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a formula for a differentiable function F(x) such that
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
In mathematics, the symbolic method in invariant theory is an algorithm developed by Arthur Cayley, [1] Siegfried Heinrich Aronhold, [2] Alfred Clebsch, [3] and Paul Gordan [4] in the 19th century for computing invariants of algebraic forms.