enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  3. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.

  4. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    The final step of cellular respiration is the electron transport chain, composed of four complexes embedded in the inner mitochondrial membrane. Complexes I, III, and IV pump protons from the matrix to the intermembrane space (IMS); for every electron pair entering the chain, ten protons translocate into the IMS.

  5. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    These electrons enter the electron transport chain of the mitochondria via reduction equivalents to generate ATP. The shuttle system is required because the mitochondrial inner membrane is impermeable to NADH, the primary reducing equivalent of the electron transport chain.

  6. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    This is an electron transport chain (ETC). Electron transport chains often produce energy in the form of a transmembrane electrochemical potential gradient. The gradient can be used to transport molecules across membranes. Its energy can be used to produce ATP or to do useful work, for instance mechanical work of a rotating bacterial flagella.

  7. File:Electron transport chain.svg - Wikipedia

    en.wikipedia.org/wiki/File:Electron_transport...

    Derivative works of this file: ETC electron transport chain.svg Compared to the original this version has: Corrected stoichiometry, Cytochrome C is no longer inside the membrane, Complex II is now transmembrane, added electrons. - w:File:Electron transport chain-es.svg

  8. Mitochondrial ROS - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_ROS

    Production of mitochondrial ROS, mitochondrial ROS. Mitochondrial ROS (mtROS or mROS) are reactive oxygen species (ROS) that are produced by mitochondria. [1] [2] [3] Generation of mitochondrial ROS mainly takes place at the electron transport chain located on the inner mitochondrial membrane during the process of oxidative phosphorylation.

  9. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    NADH and FADH 2 undergo oxidation in the electron transport chain by transferring an electrons to regenerate NAD + and FAD. Protons are pulled into the intermembrane space by the energy of the electrons going through the electron transport chain. Four electrons are finally accepted by oxygen in the matrix to complete the electron transport chain.