enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    Often expressed in cm/s. This value is inversely related to the total cross-sectional area of the blood vessel and also differs per cross-section, because in normal condition the blood flow has laminar characteristics. For this reason, the blood flow velocity is the fastest in the middle of the vessel and slowest at the vessel wall.

  3. Wiggers diagram - Wikipedia

    en.wikipedia.org/wiki/Wiggers_diagram

    Blood pressure. Aortic pressure; Ventricular pressure; Atrial pressure; Ventricular volume; Electrocardiogram; Arterial flow (optional) Heart sounds (optional) The Wiggers diagram clearly illustrates the coordinated variation of these values as the heart beats, assisting one in understanding the entire cardiac cycle. [1]

  4. Transcranial Doppler - Wikipedia

    en.wikipedia.org/wiki/Transcranial_Doppler

    Functional transcranial Doppler sonography (fTCD) is a neuroimaging tool for measuring cerebral blood flow velocity changes due to neural activation during cognitive tasks. [8] Functional TCD uses pulse-wave Doppler technology to record blood flow velocities in the anterior, middle, and posterior cerebral arteries.

  5. Biofluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Biofluid_dynamics

    The increased density comes from the increased density of a red blood cell compared with the density of water or plasma. Rheology is the study of the deformation and flow of matter. Blood Rheology is the study of blood, especially the properties associated with the deformation and flow of blood. Blood is a non-Newtonian fluid.

  6. Hemodynamics of the aorta - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics_of_the_Aorta

    As the blood moves into the aortic arch, the area with the highest velocity tends to be on the inner wall. Helical flow within the ascending aorta and aortic arch help to reduce flow stagnation and increase oxygen transport. [4] As the blood moves into the descending aorta, rotations in the flow are less present.

  7. Velocity time integral - Wikipedia

    en.wikipedia.org/wiki/Velocity_time_integral

    Velocity Time Integral is a clinical Doppler ultrasound measurement of blood flow, equivalent to the area under the velocity time curve. The product of VTI (cm/stroke) and the cross sectional area of a valve (cm2) yields a stroke volume (cm3/stroke), which can be used to calculate cardiac output.

  8. Cardiac output - Wikipedia

    en.wikipedia.org/wiki/Cardiac_output

    Major factors influencing cardiac output – heart rate and stroke volume, both of which are variable. [1]In cardiac physiology, cardiac output (CO), also known as heart output and often denoted by the symbols , ˙, or ˙, [2] is the volumetric flow rate of the heart's pumping output: that is, the volume of blood being pumped by a single ventricle of the heart, per unit time (usually measured ...

  9. Pulse wave velocity - Wikipedia

    en.wikipedia.org/wiki/Pulse_wave_velocity

    The theory of the velocity of the transmission of the pulse through the circulation dates back to 1808 with the work of Thomas Young. [9] The relationship between pulse wave velocity (PWV) and arterial wall stiffness can be derived from Newton's second law of motion (=) applied to a small fluid element, where the force on the element equals the product of density (the mass per unit volume ...