enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    There are several ways to find the greatest common divisor of two polynomials. Two of them are: Factorization of polynomials, in which one finds the factors of each expression, then selects the set of common factors held by all from within each set of factors. This method may be useful only in simple cases, as factoring is usually more ...

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is O(n 2). This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication.

  4. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n 1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as x − m.

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.

  6. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    The primitive part of a greatest common divisor of polynomials is the greatest common divisor (in R) of their primitive parts: ⁡ (⁡ (,)) = ⁡ (⁡ (), ⁡ ()). The complete factorization of a polynomial over R is the product of the factorization (in R ) of the content and of the factorization (in the polynomial ring) of the primitive part.

  7. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  8. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Here, a greatest common divisor of a and b is an element d that divides both a and b, and such that every other common divisor of a and b divides d. All greatest common divisors of a and b are associated. Any UFD is integrally closed. In other words, if R is a UFD with quotient field K, and if an element k in K is a root of a monic polynomial ...

  9. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    A third difference is that, in the polynomial case, the greatest common divisor is defined only up to the multiplication by a non zero constant. There are several ways to define unambiguously a greatest common divisor. In mathematics, it is common to require that the greatest common divisor be a monic polynomial.