Search results
Results from the WOW.Com Content Network
The global form of an analytic function is completely determined by its local behavior in the following sense: if f and g are two analytic functions defined on the same connected open set U, and if there exists an element c ∈ U such that f (n) (c) = g (n) (c) for all n ≥ 0, then f(x) = g(x) for all x ∈ U. If a power series with radius of ...
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
The beta-binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with heterogeneity in the success probability. The degenerate distribution at x 0, where X is certain to take the value x 0. This does not look random, but it satisfies the definition of random variable. This is useful because ...
For any , the coefficient of /! in the moment generating function (expressed as an exponential power series in ) is the normal distribution's expected value [] . The cumulant generating function is the logarithm of the moment generating function, namely
In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell . Given an arithmetic function f {\displaystyle f} and a prime p {\displaystyle p} , define the formal power series f p ( x ) {\displaystyle f_{p}(x)} , called the Bell series ...
The six most common definitions of the exponential function = for real values are as follows.. Product limit. Define by the limit: = (+).; Power series. Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n.
Given some initial conditions, we can either solve the recurrence entirely or obtain a solution in power series form. Since the ratio of coefficients A k / A k − 1 {\displaystyle A_{k}/A_{k-1}} is a rational function , the power series can be written as a generalized hypergeometric series .
To determine the value (), note that we rotated the plane so that the line x+y = z now runs vertically with x-intercept equal to c. So c is just the distance from the origin to the line x + y = z along the perpendicular bisector, which meets the line at its nearest point to the origin, in this case ( z / 2 , z / 2 ) {\displaystyle (z/2,z/2)\,} .