Search results
Results from the WOW.Com Content Network
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.
The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency range of a signal and the sample rate required to avoid a type of distortion called aliasing. The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing.
The sampling frequency or sampling rate, , is the average number of samples obtained in one second, thus = /, with the unit samples per second, sometimes referred to as hertz, for example 48 kHz is 48,000 samples per second.
In this example, f s is the sampling rate, and 0.5 cycle/sample × f s is the corresponding Nyquist frequency. The black dot plotted at 0.6 f s represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample rate. The other three dots indicate the frequencies and amplitudes of three other sinusoids that ...
A typical choice of characteristic frequency is the sampling rate that is used to create the digital signal from a continuous one. The normalized quantity, f ′ = f f s , {\displaystyle f'={\tfrac {f}{f_{s}}},} has the unit cycle per sample regardless of whether the original signal is a function of time or distance.
If the ratio of the two sample rates is (or can be approximated by) [A] [4] a fixed rational number L/M: generate an intermediate signal by inserting L − 1 zeros between each of the original samples. Low-pass filter this signal at half of the lower of the two rates. Select every M-th sample from the filtered output, to obtain the result. [5]
Plot of sample rates (y axis) versus the upper edge frequency (x axis) for a band of width 1; grays areas are combinations that are "allowed" in the sense that no two frequencies in the band alias to same frequency. The darker gray areas correspond to undersampling with the maximum value of n in the equations of this section.
Both downsampling and decimation can be synonymous with compression, or they can describe an entire process of bandwidth reduction and sample-rate reduction. [ 1 ] [ 2 ] When the process is performed on a sequence of samples of a signal or a continuous function, it produces an approximation of the sequence that would have been obtained by ...