Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km. [7] The duration of these storms are around a day and reoccur every approximately 27.3 days. [6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere.
MADRE over-the-horizon radar at the NRL's Chesapeake Bay Detachment U.S. Navy Relocatable Over-the-Horizon Radar station. The most common type of OTH radar, OTH-B (backscatter), [3] uses skywave or "skip" propagation, in which shortwave radio waves are refracted off an ionized layer in the atmosphere, the ionosphere, and return to Earth some distance away.
The Super Dual Auroral Radar Network (SuperDARN) is an international scientific radar network [1] [2] consisting of 35 [3] high frequency (HF) radars located in both the Northern and Southern Hemispheres.
Anomalous propagation refers to false radar echoes usually observed when calm, stable atmospheric conditions, often associated with super refraction in a temperature inversion, direct the radar beam toward the ground. The processing program will then wrongly place the return echoes at the height and distance it would have been in normal conditions.
Weather radar in Norman, Oklahoma with rainshaft Weather (WF44) radar dish University of Oklahoma OU-PRIME C-band, polarimetric, weather radar during construction. Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type (rain, snow, hail etc.).
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
The ionosphere is a region of the upper atmosphere, from about 80 km (50 miles) to 1000 km (600 miles) in altitude, where neutral air is ionized by solar photons, solar particles, and cosmic rays. When high-frequency signals enter the ionosphere at a low angle they are bent back towards the Earth by the ionized layer. [ 1 ]