enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isochoric process - Wikipedia

    en.wikipedia.org/wiki/Isochoric_process

    In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric process is exemplified by the heating or the cooling of the contents of a sealed ...

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Table of thermodynamic equations; Potentials. ... Common thermodynamic equations and quantities in thermodynamics, using mathematical notation, ... Isochoric process:

  4. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    An isochoric process however operates at a constant-volume, thus no work can be produced. Many other thermodynamic processes will result in a change in volume. A polytropic process , in particular, causes changes to the system so that the quantity p V n {\displaystyle pV^{n}} is constant (where p {\displaystyle p} is pressure, V {\displaystyle ...

  5. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  6. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

  7. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    The stringent nature of incompressible flow equations means that specific mathematical techniques have been devised to solve them. Some of these methods include: The projection method (both approximate and exact) Artificial compressibility technique (approximate) Compressibility pre-conditioning

  8. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    For complex thermodynamic systems with several interacting parts and state variables, or for measurement conditions that are neither constant pressure nor constant volume, or for situations where the temperature is significantly non-uniform, the simple definitions of heat capacity above are not useful or even meaningful.

  9. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown. Each process has a well-defined start and end point in the pressure-volume state space.